
DOCUMENT RESUME

ED 083 670	EA 005 505
AUTHOR	Ward, Delbert B.
TITLE	Schools in Kansas with Tornado Protection. Shawnee Mission Public SchoolsDistrict No. 512.
INSTITUTION	Defense Civil Preparedness Agency (DOD), Battle Creek, Mich.
REPORT NO	DCPA-TR-79
PUB DATE NOTE	Jul 73 39p.
EDRS PRICE	MF-\$0.65 HC-\$3.29
DESCRIPTORS	Civil Defense; *Climatic Factors; Design Needs; *Facility Requirements; Geographic Location; *Radiation Effects; Safety; *School Design; *School Safety
IDENTIFIERS	*Tornado Protection

ABSTRACT

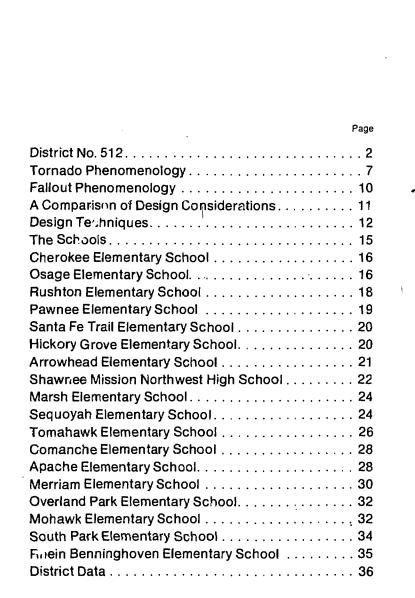
Kansas and nearby Missouri are among the half-dozen states in America having the greatest frequency of tornadoes of any region in the world. This booklet describes a districtwide approach of designing and constructing tornado-resistant shelters as integrated parts of the school facilities. The design criteria for tornado protection also resulted in fallout radiation protection. The technical data for, drawings, and photographs of 18 schools are included. (Photographs and some floor plan sketches may reproduce poorly.) (Author/MLF)

FILMED FROM BEST AVAILABLE COPY

Front Cover Photo. Tornado near Scottsburt, Nebraska, June 27, 1955, Taken by V Pumphrey. Courtesy Nabonal Weather Service-SELS Center, Konses City, Missouri

In the March 1972 Report of the National Association of State Civil Defense Directors, I wrote: "Public safety and security are watch-words of civil defense...." That same month I reported we had reached formal agreements with other Federal agencies for working with communities in preparedness for peacetime disasters. Such preparedness takes many forms. We at DCPA seek as many ways as possible to assist local efforts. One way is promoting safety from tornadoes.

Property damage and casualties caused by tornadoes are increasing as the Nation becomes more urbanized. Tornadoes have not become more frequent. It's just that as the population increases, construction keeps pace and covers more of the land surface.


Some communities are prepared for these severe storms, especially in areas where they are most frequent. An excellent example of preparedness—the Shawnee Mission School District's Tornado Shelter Plan—is presented in this report.

We can all learn from the experiences of others. That is why we compiled the details of how this suburban community has planned to safeguard its children. The plan also offers protection from fallout radiation, which could be a grave threat in case of nuclear attack:

John E. Davis

John E. Davis Director Defense Civil Preparedness Agency

ERIC Putter Provided by Effect

Booklet Prepared by: Delbert B. Ward, A.I.A. Associate Professor of Architecture The University of Utah

DISTRICT NO. 512 SHAWNEE MISSION PUBLIC SCHOOLS

A school is made up of many things. . .blackboards and backboards. . .books and bands. . .lockers and lunchrooms and labs. . .a place for learning and growing, a place where we build for the future. It can also be something more. . .a sheller to help safeguard that future. . .for our children and our communities.

Author Unknown

This booklet describes a school district in suburban Kansas City, Kansas, which provides that "something more" in many of its buildings.

Kansas and nearby Missouri are among the half-dozen States in middle-America having the greatest frequency of tornadoes of any region in the world. The chances of any particular location being struck by a tornado in the counties surrounding Kansas City are several times higher than in nearby States and are exceeded only in central Oklahoma and along the Texas-Oklahoma border.

A person's safety in an area struck by a tornado depends upon his nearness to the storm and the strength of the building he is in. Knowing what to do and where to seek safety may not be enough. Life and safety may depend upon resistance of the building to the extreme winds.

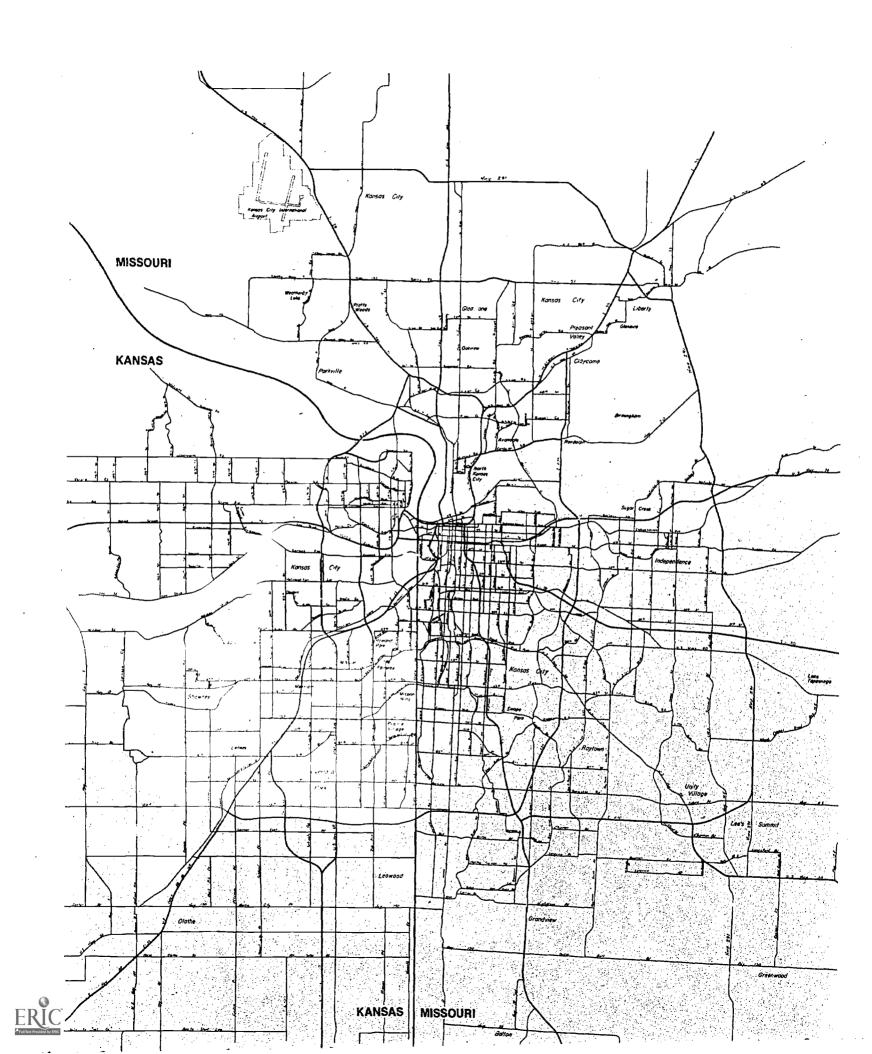
Providing for the safety of the relatively unresourceful child in school is a responsibility which transcends the daily learning activities. Tornadoes are one such threat to pupil safety in Kansas. In some districts school is dismissed when violent weather threatens. In others safety is sought in the strongest portions of the school buildings. Still others have designed and constructed tornado-resistant shelters as integrated parts of the school facilities.

The Shawnee Mission School District has followed the latter course of action. In general, the pattern followed by the district has been to provide tornado protection in as many schools as possible rather than randomly build a shelter as the opportunity appears. This district wide approach is the unique aspect examined in this booklet.

Shawnee Mission School District Number 512 was formed in 1970 through unification of 13 elementary school districts and the Shawnee Mission High School District in Johnson County, Kansas. In their planning for tornado safety, administrators and patrons of District No. 512 are the beneficiaries of decisions and actions taken independently by the elementary-school districts in earlier years as well as by similar earlier actions of the high-school district which resulted in tornado-resistant facilities in a number of schools. The district presently operates 5 senior high schools, 10 junior high schools, and 50 elementary schools. Of these 65 schools, 37 have tornado shelters.

The district serves a population of 196,300 in an area of approximately 74 square miles. Total pupil enrollment in 1972-1973 was 44,578, including special education.

The map on page 3 indicates the general service area of the district in metropolitan Kansas City. The locations of schools are indicated in a large-scale map of the school district shown on pages 4 and 5. Those schools with tornado protection are identified as are the schools illustrated in this booklet.

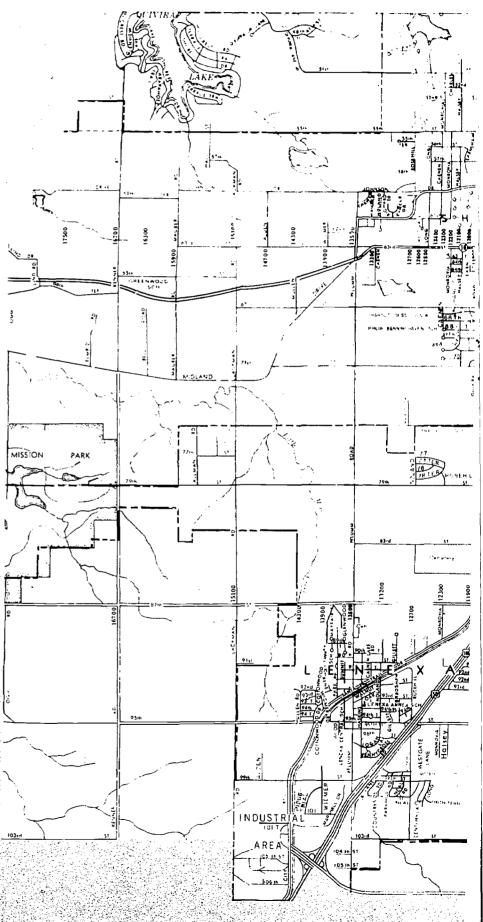

Former Overland Park Elementary School District No. 110, one of the elementary-school districts included in the unification, offers an especial'y interesting case study of tornado protection. Through a construction program commenced in 1966, District No. 110 developed tornado shelter in each of its 14 existing schools and required that tornado protection be designed into one new school. Thus, all schools of the former district provide tornado protection for all enrolled pupils and teaching staff.

The comprehensive planning undertaken by District No. 110 is unique in the Nation as an effort to provide for pupil safety from tornadoes. Voters recorded their support for tornado protection for the district's schools in a bonding referendum in May, 1966, and plans were drawn up and implemented in the ensuing 3 years.

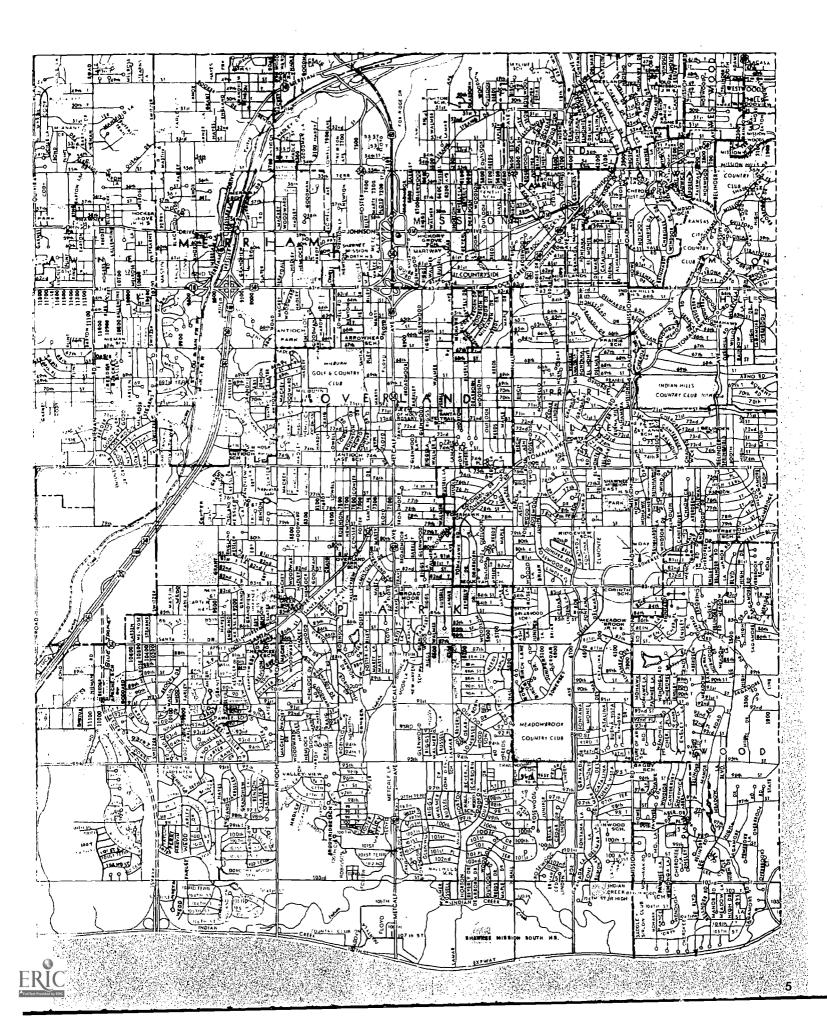
The construction program called for upgrading and expanding a number of existing schools in District No. 110 to correct educational deficiencies. At the same time, tornado protection was developed in each of the 14 existing schools and in the design of one new school which was a part of the total construction program.

The educational needs of each existing school were unique due to wide disparity both in construction features and in space arrangements. Several of the schools were in need of library, music, art, or science areas; others needed indoor activity areas for the severe Kansas winter climate; two others needed no new instructional areas but because of their light construction appeared to offer no suitable tornado-resistant shelter; two schools appeared to offer both adequate instructional space and suitably rigid structures for tornado protection. Some of the existing buildings were slab-on-grade construction without basements; other schools had basements or were designed with two levels on sloping sites. Because of these wide-ranging situations, the solutions to the educational and safety requirements were equally wide-ranging.

Designs for all 15 schools of the Overland Park Elementary School District program and for


DISTRICT NO. 512 Shawnee Mission Public Schools

Schools with Tornado Protection,


illustrated in booklet.

Schools with Tornado Protection, not illustrated in booklet.

Schools without Tornado Protection, not illustrated in booklet.

several other schools now a part of District No. 512 were prepared by the firm of Marshall & Brown, Architects and Engineers, with offices in Kansas City, Kansas, and Kansas City, Missouri. Results of their efforts, illustrated in later pages of this booklet, may be categorized in four distinct groups:

Addition of new instructional facilities with tornado protection included in belowground space.

Addition of new instructional facilities with tornado protection included in aboveground space.

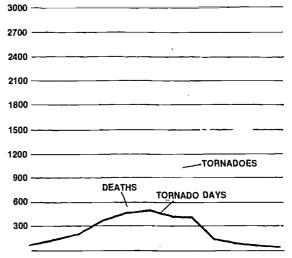
Addition of new single-use, tornado-protected space.

Renovation of existing facilities to create tornado-protected areas.

Design criteria were established by the architects after considerable research into space needs and tornado-resistant design. The architects found that fallout radiation protection occurred as a spin-off benefit in most of the tornado-protected spaces. Consideration was given to space requirements for the shelter areas, their ventilation, the structural resistance to high winds and collapse of surrounding portions of the schools, and to penetration of airborne debris into the shelters. Emergency electrical power was provided in all by means of small, gasoline-driven generators.

The former Overland Park Elementary School District, while unique, was not the only district included in the unification which had schools with tornado protection. Shawnee Elementary School District No. 27 also had several schools designed with tornado shelter for pupils. Schools with tornado protection from District 27, District 110, and the Shawnee Mission High School District are illustrated in this booklet. Moreover, other architectural firms in the Kansas City area besides Marshall & Brown have participated in designing tornado shelters for schools. The work of only two firms are illustrated, however, because the example schools came from just 3 of the 14 former districts where these architectural firms were most actively engaged in school facilities design.

Whatever the reasons that tornado protection was created in schools of the former districts, Shawnee Mission School District No. 512 now places great value on the fact that past decisions and activities of the communities it serves have supported the idea that safety for their youth is expected in the schools which serve them.


TORNADOES

Tornadoes are the most violent of all the winds of the world. They are severe local storms with cyclonic winds typically sweeping in a counterclockwise rotation about a funnel-like vortex. The extreme winds of this vortex are among the most destructive on earth as they move through populated, built-up areas.

Tornadoes occur in many regions of the world and have been reported in all of the 50 States. Formation of these storms is most frequent in the continental plains of North America, coincident with the mid-western States of Texas, Oklahoma, Kansas, Missouri, Nebraska, Iowa, and Illinois, but the southeastern States experience many as well. The region of tornado occurrence tends to shift with the seasons. While no season is free of the storms, reported tornadoes in the southeastern States tend to increase in the late winter and early spring months; whereas the largest number of reported tornadoes in the central plains States is in late spring. In early summer, the occurrences are greater in the upper midwestern States. This seasonal shift is associated with the global seasonal adjustments of prevailing winds and weather as colder northern hemisphere air collides with moisture-laden tropical air in an arc shifting from southwest to northeast from early spring through early summer.

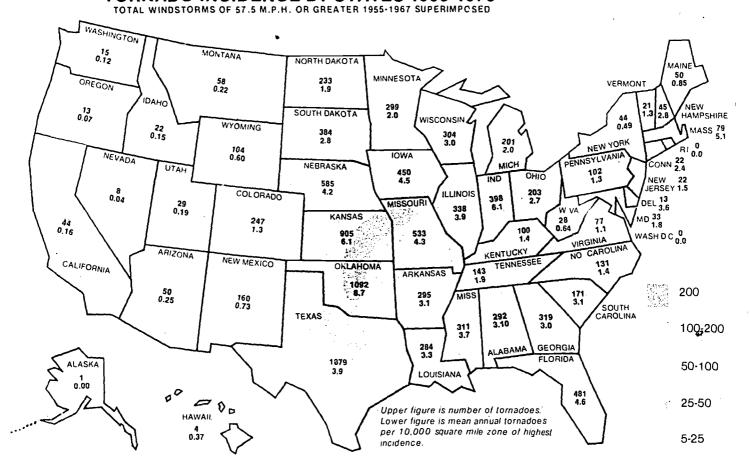
The probability that a specific location will be struck by a tornado in any year is small. For example, the probability of a tornado striking a given building in the area most frequently subject to tornadoes is 0.0363, or about once in 250 years. The chances in other areas of the Nation are even less, approaching zero in some western States. However, the risk always is present. Mathematical probability is but a tool for prediction and provides only a statistical basis for analysis. Actual occurrences in specific locations provide numerous exceptions. It has been noted, for example, that tornadoes have struck Oklahoma City nearly 30 times since 1892.

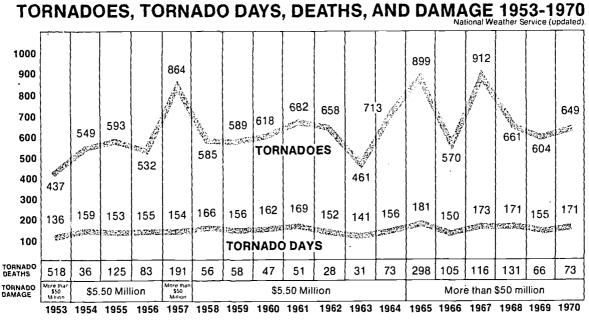
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec National Weather Service (updated). Tornadoes may occur at any time during the day or night but form most frequently during the warmest hours of the day from late afternoon into early evening. 82 percent of the total occurrences is between noon and midnight; 23 percent is between 4 and 6 p.m

The "average" tornado rotates in a counterclockwise direction in the northern hemisphere, moves at about 45 m.p.h. in a northeasterly path, and impacts upon an area about 475 feet wide and 15 miles in length during a time span of about 20 minutes. However, the "average" tornado rarely occurs. Tornadoes rotating clockwise have been reported-although infrequently; speed of travel is related to the "mother" tornado cloud, and reports of speed vary from 15 m.p.h. to 60 m.p.h. The path of destruction may be a few hundred yards or several hundred miles long and less than 100 feet or over a mile in width. Some tornado vortices never touch the ground and may be very short-lived, or the tornado may drop to touch the ground, rise and drop again in a honscotch manner.

Although warning systems advising of tornado threats have reached a high level of sophistication, the physical factors associated with tornado formation, the localized nature of the storm, and the short time of occurrence make protective action difficult and somewhat limited. The usually short time between warning and actual impact of a tornado upon an area allows for little more protective action than to seek shelter or cover in some reasonably protected area. Tornado watches for specific geographic areas, released by the National Severe Storms Forecast Center in Kansas City, Missouri, and broadcast to the public by radio and television, are the first alert that meteorological conditions are right for the spawning of tornadoes. Tornado warnings are broadcast when an actual sighting of a tornado has been reported. Thus, there is some chance to mitigate the effects of these storms on the lives and safety of people. Except with extremely rigid construction, there is little chance to insure the durability of buildings by preventive action. Steps to mitigate property losses must be taken before a tornado alert, preferably at the time of building design and construction.

There is some disagreement and considerable uncertainty about maximum wind velocities associated with tornadoes. Measuring devices most often are not at the locations of the storms, and those that are rarely survive the wind pressures. Current estimates place the maximum velocity at about 300 m.p.h., but higher and lower values have been argued with convincing data. However, even a wind velocity of 200 m.p.h. will result in a wind pressure of 102.4 lb. per sq. ft. of surface area—a loading above that which most buildings are designed to resist. Clearly, normal construction practices must be upgraded to resist such forces. Another characteristic of the tornado having serious implications on building response is the partial vacuum in the core of the funnel. The resulting pressure differential between ambient air within a building and the partial vacuum created by the moving vortex can result in "explosive" loadings of even greater magnitude than those produced by the wind pressure.


Still another hazard in the area impacted by these extreme winds is the flying missile, or airborne debris, carried by the winds. Gravel from roofs or ground, debris from buildings torn apart, or components from localized building failure create a serious hazard to people and cause uncounted broken windows and damaged walls.


If the safety of building occupants is to be insured, and if the amount of property damage caused by tornadoes is to be reduced, greater attention to building rigidity and securely fastened components must be provided. Total resistance probably is not feasible for buildings which might be subjected to tornadic forces of the magnitudes cited above. Property loss often will be an acceptable alternative; whereas danger to people is not acceptable. Practical considerations of construction cost and appearance make tornado shelters attractive as a third alternative. It is possible to provide safety for occupants in a small portion of a building in lieu of constructing the entire building to withstand the tornado. Thus, the objectives of safety for occupants and of reasonable construction cost and appearance can be satisfied simultaneously for buildings which might be subjected to the extreme loadings caused by tornadoes.

The concept of a dual-purpose tornado shelter was followed by the architects of the schools shown in this booklet. Although most of the schools would not be expected to come through a tornado undamaged, each offers an area of safety for the students—from building collapse, from pressure differential loadings, and from flying debris. These schools have gained their protection in a variety of ways, but all protected areas were developed to resist the pasic forces described above.

Clearly, it is possible to provide for human safety in schools constructed in regions frequently subjected to tornadoes. The tornado-resistant area of the schoolhouse offers a solution to the several unique characteristics of these storms—their unpredictable occurrence, the short warning time usually given, and their extreme forces. The tornado shelter does not do much to mitigate property damage, however. That is another kind of problem. But it also can be solved through design once the basic phenomena of the storm and the vulnerabilities of building components are understood.

ERIC attact Provided by EEC

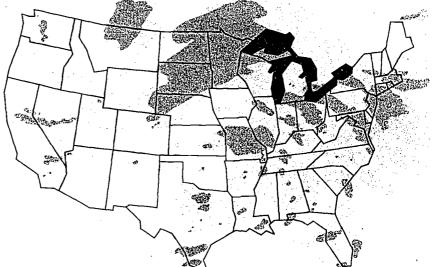
FALLOUT

Shelters which provide protection against nuclear explosions, including fallout radiation, and tornado shelters have several common aspects. Foremost is their purpose—that of providing for the safety of people.

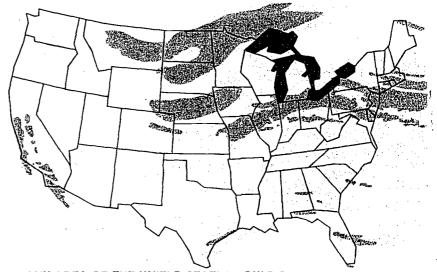
There are other common aspects which less frequently are known or understood. For example, the strong construction required to provide for human safety from tornadoes often will offer the necessary protection from radioactive fallout. The space requirements of the two kinds of shelters are based upon an area allowance per occupant. However, the unit area allowance for tornado shelters usually is smaller than for fallout shelters due to the shorter staytime. Ventilation needs for both types of shelters are established from occupancy but, again, tornado shelter ventilation requirements are lower because of the shorter use time and associated smaller heat gain.

A significant aspect of the schools illustrated in this booklet is that the designs for tornado protection in most cases also meet the requirements for fallout radiation protection. A comparison of design considerations for the two hazards is provided on page 11.

There also are differences in the two hazards—tornadoes and fallout radiation—just as there are common aspects. One major difference is that fallout radiation would be an areawide, indeed likely a nationwide, occurrence.


Another difference is the length of time that the fallout hazard would persist in contrast to the tornado hazard. The tornado watch and warning times combined rarely exceed a few hours; whereas the fallout radiation hazard could persist for a number of days. Thus, the staytime in a fallout shelter is from 48 hours up to two-weeks.

Radioactive fallout is produced by surface nuclear detonations. Ground-level nuclear explosions produce a residue which falls to earth as a widespread blanket of tiny radioactive particles. Gamma radiation from fallout can cause sickness or death to unprotected persons. The pattern and extent of fallout is unpredictable due to its dependency upon prevailing winds, moisture content of the air, size of weapon, height of detonation, and other factors.

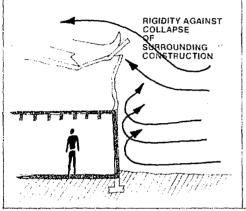

Fallout shelter, like tornado shelter, is a concept of protection in which buildings provide safety for people. Protection Factor (PF) is the measure of radiation protection afforded by a sheltered location. It expresses a relationship between amounts of radiation that would be received by an unprotected person and by a person inside a shelter.

High radiation protection factors are achieved through manipulation of roof and wall planes of a building—called "geometry shielding" when the path of the radiation is affected, and called "barrier shielding" when the mass of the wall or roof material is increased. Every building provides some protection from fallout radiation. Some buildings offer better shelter than others because of the way they are designed or the construction materials used. Buildings with basements offer inherently good radiation shielding. Multistoried buildings and those with reinforced concrete floors and roofs also offer better-than-average shielding. However, even one-story, slab-on-grade buildings sometimes can be modified to provide acceptable shielding without excessive cost or loss of function. Through careful design, shelter in buildings can be created, inherent shielding can be improved, and weak points can be avoided.

DISTRIBUTION OF RADIOACTIVE FALLOUT ON A FALL DAY

DISTRIBUTION OF RADIOACTIVE FALLOUT ON A SPRING DAY

ANY AREA OF THE UNITED STATES COULD BE SUBJECTED TO RADIOACTIVE FALLOUT Distribution patterns above are based upon an assumed attack situation and given meteorological conditions of two different days.


A COMPARISON OF DESIGN CONSIDERATIONS

in the construction of the second	n a management a standard a standard (daga na je spanje standard je prosta s je prosta s je s standard s s stan	TORNADOES	FALLOUT RADIATION
	EXTENT OF HAZARD	Localized	Nationwide
E.	WARNING TIME	A few minutes to a few hours	Up to several hours
	HAZARD TO PEOPLE	Serious to fatal	May be fatal
and the second of the second o	HAZARD TO BUILDINGS	Moderate to severe	None
	STAY TIME IN SHELTER	A few hours or less	Several days to 2 weeks
4. J. S	SPACE REQUIREMENTS	Allow 4 to 7 sq. ft. per person	Allow 10 sq. ft. per person
and the set	VENTILATION OF SHELTER	Recommended	Required—varies with geographic area
and the second and th	WIND VELOCITY PRESSURE	Up to 300 m.p.h., or 230 p.s.f.	None
I	SHIELDING	Structural rigidity only	Mass thickness and geometry
X	PRESSURE DIFFERENTIAL	Venting recommended	None
	ENCLOSURE	Batfling from flying debris	Baffling from sight-line radiation paths

Fallout radiation protection is for the safety of Tornado protection involves two fundamental concerns-protection of people and mitigation people. Safety is achieved by minimizing the of property damage. Safety for building amount of lethal radiation entering the shelter occupants is dependent upon rigidity of the from fallout radiation fields on the outside. Gamma radiation enters a building from two structural system which encloses the shelter. Resistance to the following effects is essential: sources: **Roof Contribution** - radiation emitted by radioactive Extreme Winds structural collapse or translation particles on overhead surfaces. Pressure Differential - internal explosive force Ground Contribution - radiation emitted by radioactive Collapse surrounding building failures particles which accumulate on ground **Flying Debris** airborne missiles surfaces. The ground contribution is further categorized as grounddirect, wall-scattered, and skyshine. Mitigation of property damage also is possible through design. Aspects of the complete building to be considered include the following: Fallout protection may be enhanced for a shelter location by any one or more of several design techniques. Increased barrier mass through Structural System - sufficient rigidity of the complete judicious selection of construction materials, structural system. arrangement of interior spaces, placement of windows or other openings, and site features Component Rigidity - adequate anchorage of component such as slope, earth berms, and retaining walls assemblies to building-doors, are among the many techniques which have overhangs, parapets, etc. been developed for improving the radiation shielding qualities of buildings. **Flying Debris** - components torn from the building, from other buildings, and ground missiles. ROOF CONTRIBUTION * * Water Damage - Internal damage by rain accompanying the tornado when roofs, windows, and doors fail. COLLAPSE OF SURROUNDING CONSTRUCTION EXTREME WINDS MISSILES PRESSURE DIFFERENTIAL

Economically, it appears infeasible to design all buildings to resist a direct hit by a tornado. In such cases a tornado-protected space within a building must be designed to withstand not only the tornadic winds but also the possible collapse of portions of the building or adjacent construction.

Tornadic winds can hurl objects, large and small, with tremendous speed. These flying missiles are an extremely serious hazard to human safety as well as to building rigidity. Baffled entrances and other openings into the shelter are essential to the safety-of human occupants. Barriers placed outside the building such as planting boxes, earth berms, and screen walls offer much the same shielding as barriers within the building. Ground-source radiation can be attenuated effectively by judiciously placing these kinds of barriers between the shelter and the principal radiation source field.

Overhead radiation contribution may be

reduced by increasing the overhead mass,

either at the roof plane or at intermediate

between the contaminated roof plane and

the shelter space. Ground contribution may

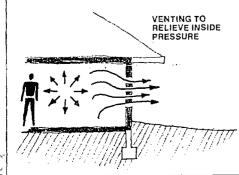
altering their locations, or by placing interior

be reduced by increasing the exterior wall

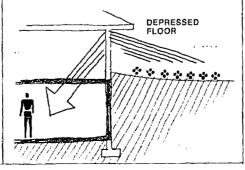
floors, or by increasing the distance

mass, by reducing the window areas,

partitions between the shelter and the radiation source. Interior partitions also may


help to reduce the overhead contribution.

INCREASED WALL


AND ROOF BARRIER MASS

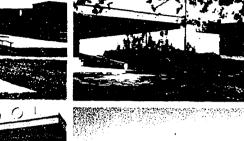
BAFFLE FROM FLYING DEBRIS OUTSIDE BARRIER AND BAFFLE

The vortex of a tornado creates a partial vacuum. When the vortex passes over a building, the resulting force is outward on the walls and roof. Depending upon the pressure gradient, this force may exceed the forces of the tornadic winds. Venting, which allows release of air pressure from within the space, is one way to relieve the outward loading on the structure.

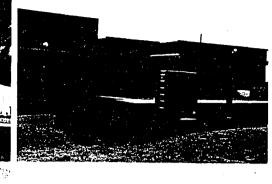
Ground-direct radiation can be eliminated by dropping the shelter below the ground plane (a radiation source). Fully or partially depressed floor levels and basements offer nearly comparable shielding effectiveness provided the overhead shielding is suitable. Safety from tornado effects such as wind-blown debris also is evident. The shelter problems for both hazards thereby are limited to the overhead construction—its mass and structural rigidity.

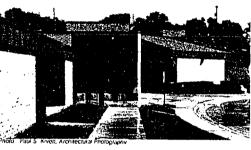
A space rigidly designed to resist tornado-induced loadings probably is enclosed with walls and roof of increased thickness for structural resistance—more mass. Reciprocally, a space designed to offer radiation protection most likely is enclosed with walls and roof of increased mass—though not for structural reasons. Thus, no matter which is the initial concern, resistance to both hazards will be enhanced.

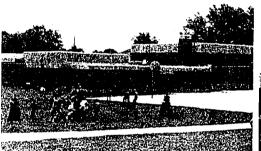
Baffling of openings to resist penetration of wind-blown debris is accomplished in ways similar to placement of outside barriers to reduce sight-line entry of radiation in a shelter space. Although the objectives are different, the means may be the same, and the result will be enhanced resistance to both hazards.

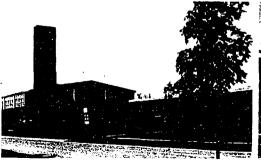

A basement space often offers inherently good radiation shielding and tornado protection.

Some features of design which enhance resistance to effects induced by one hazard of the environment may not have parallel benefits of resistance to other hazards. Venting is unique to tornado effects.





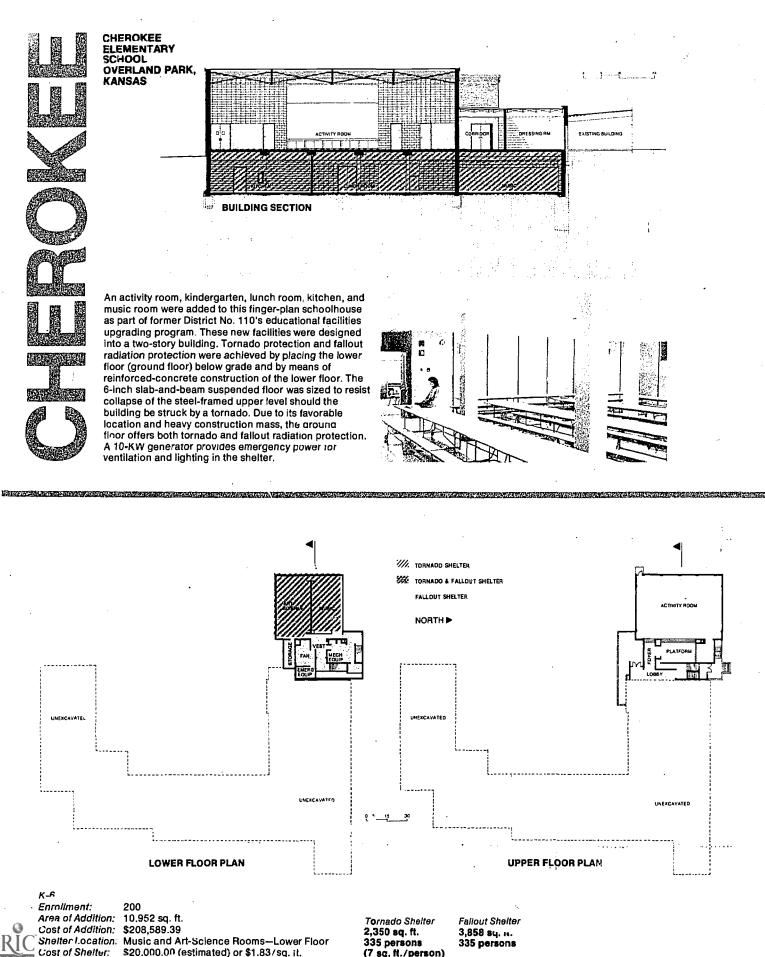

Ca.







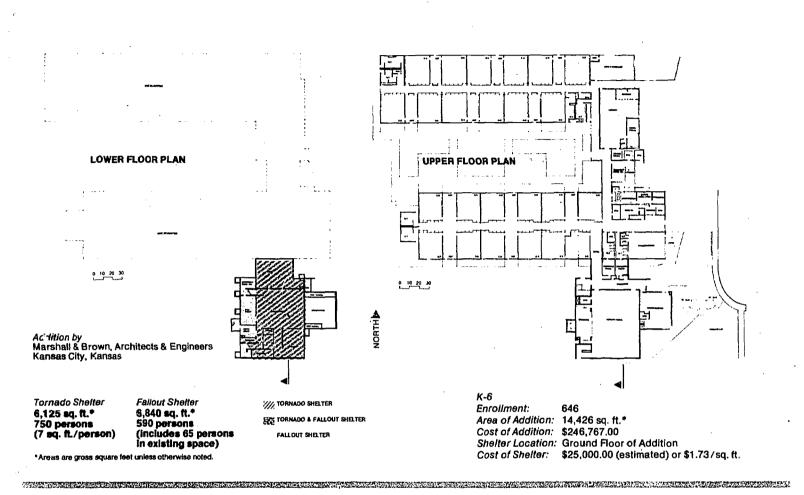
. .

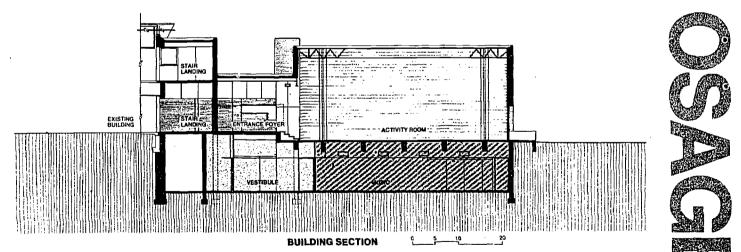

·

. . .

.

. .


ERIC Auli Text Provided by ERIC

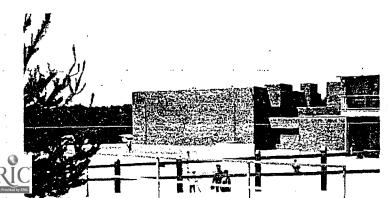


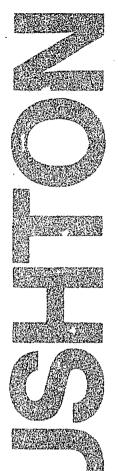
L OF OHBITAL \$20.000.00

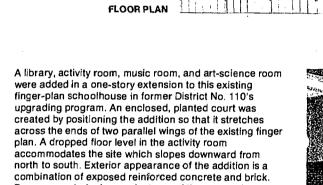
16

(7 sq. ft./person)

The Osage Elementary School was constructed in three phases. The east wing and south-wing cafeteria were completed in the late 1950's. A classroom wing was added on the north in 1960. An extension of the north wing was completed in 1968. The most recent addition included an activity room and art-science and music rooms in a two-story structure. A sloping site allowed connection of the activity room to the existing structure at grade (first floor of the existing classroom wing) and lower-level music and art-science rooms below ground. This lower-level space also doubles as a tornado shelter and fallout shelter. 5-inch slab-and-beam construction of reinforced concrete for the floor of the activity room provides safety from tornado-induced forces, including possible collapse of steel-framed upper-story construction. A 15-KW generator provides emergency power tor ventilation and


lighting in the shelter area


OSAGE


OVERLAND PARK,

KANSAS

ELEMENTARY

111 TORNADO SHELTER

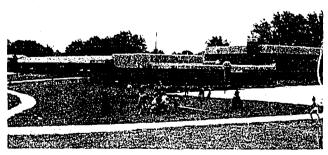
lebb.

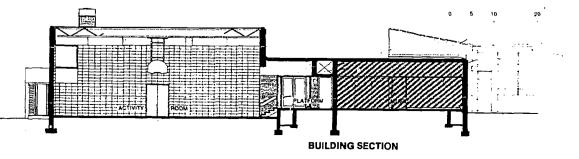
elivity im

Tornado shelter was designed into a core space which is used daily for music and art-science instruction. Necessary protection was achieved with 12-inch concrete walls around the designated shelter area and with a 41/2-inch slab-and-beam roof system just over the shelter area. Steel framing is used for other parts of the addition. Doors into the teaching areas, which double as tornado shelter, are recessed and positioned to provide baffling. A mechanical equipment room within the shelter area houses an emergency generator and ventilation fans. Spring-loaded louvers in the mechanical equipment space allow venting for pressure differential that might result from a passing tornado. This tornado shelter is one of a very small number in former Overland Park District No. 110 which does not provide fallout radiation protection meeting recommended DCPA standards. However, it does provide significant fallout radiation protection and could be the best shelter in the neighborhood. An additional one to two inches of concrete on the roof would provide shielding meeting DCPA standards.

c 5 10 20 30

11


Will em


hitche

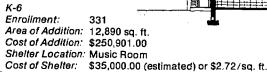
Indergert

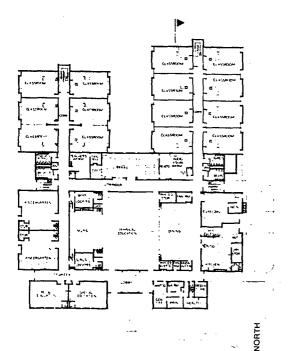
te øcher je ur Ag

NOCTH

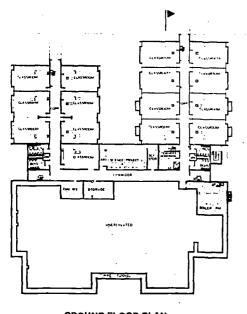
Deep concrete facias are features of the exposed concrete frame.

ELEMENTARY SCHOOL MISSION, KANSAS

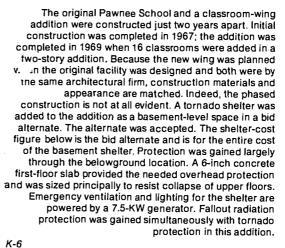

Tornado Shelter 2,194 sq. ft 400 persons (5 sq. ft./person)


RUSHTON

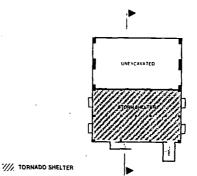
Fallout Shelter 40 persons in existing building. New construction-less than DCPA standards-200 persons.


Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas

K-6



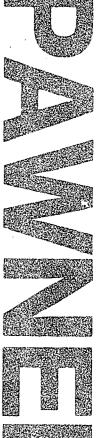
FIRST FLOOR PLAN



GROUND FLOOR PLAN

Enrollment: 828 Area of Addition: 23,780 sq. ft. Cost of Addition: \$325,268.00 Shelter Location: Basement of Southwest Classroom Wing Cost of Shelter: \$47,787.00 (bid alternate) or \$2.01/sq. ft.

Original Building & Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas

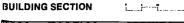


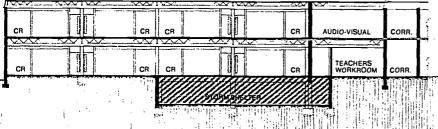
100 TORNADO & FALLOUT SHELTER

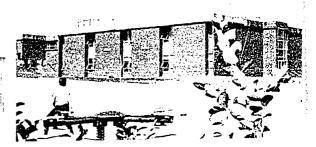
FALLOUT SHELTER

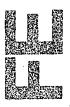
UNEXCAVATED

LOWER FLOOR PLAN





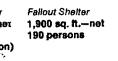

PAWNEE **ELEMENTARY SCHOOL OVERLAND PARK**, KANSAŚ


Tornado Shelter 4,257 sq. ft.--net 851 persons (5 sq. ft./person)

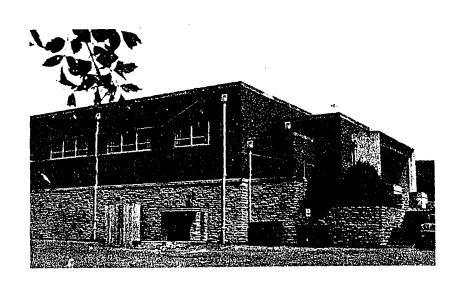
Fallout Shelter 4,257 sq. ft .-- net 565 persons (includes 140 persons in initial construction)

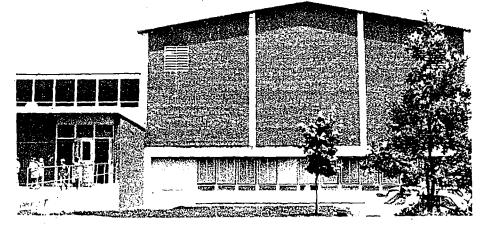
SANTA FE TRAIL ELEMENTARY SCHOOL OVERLAND PARK, KANSAS

Santa Fe Trail Elementary School is one of two schoolhouses of former District No. 110 to which no new educational space was added in the upgrading program of the late 1960's. Moreover, an examination of the building indicated that adequate tornado shelter already existed in ground-floor locker room and storage areas under an activity room on the first floor. Fallout shelter also had been identified in the same general area prior to the tornado protection analysis but only about one-half of the tornado shelter meets DCPA standards for fallout radiation protection. However, all the area provided significant failout radiation protection. Because of these favorable findings-the lack of need for new educational facilities and the presence of acceptable tornado shelter---no modifications or additions were made to this schoolhouse.


K-6 Enrollment: 507 Shelter Location: Ground-Floor Dressing Rooms & Storage

Shelter Analysis by Marshall & Brown, Architects & Engineers Kansas City, Kansas


Tornado ShelterFallo3,800 sq. ft.-nex1,90760 persons190(5 sq. ft./person)


K-6

Enroliment:

an analysis in the second s

1.12.05

HICKORY

GROVE

SCHOOL

MISSION,

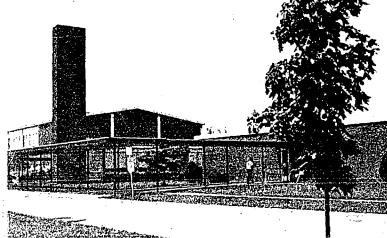
KANSAS

This schoolhouse is the other of two schools of former District No. 110 for which tornado protection was developed or found in existing construction. New facilities were not needed for Hickory Grove Elementary School so much as was upgrading of existing facilities. Hickory Grove Elementary School is an old school, the oldest of former District No. 110, and has been expanded several times in small increments. Educational rehabilitation of existing space was deemed more essential than new construction. An examination of existing space also revealed the presence of acceptable tornado and fallout radiation protection. The protection was inherent in original construction. Fallout-protected areas are in adjacent or nearby equipment rooms and storage space. The space selected for the tornado shelter does not meet fallout-shelter shielding standards. In this case, the fallout-protected areas provide tornado protection but not the other way around.

The cafeteria/tornado shelter opens to grade on the south and is set into the sloping ground on the north. Modifications to create an acceptable tornado shelter comprised only emergency ventilation and baffling of a few windows along the exposed south wall. The structural integrity of the existing concrete one-way, ribbed-joist floor system was deemed suitable against tornado-induced forces. A few windows were closed with matching ashlar stonework, and a spring-loaded louver venting system for relieving air pressure (tornado-induced pressure differential) in the south wall was baffled against wind-blown debris by a concrete pier.

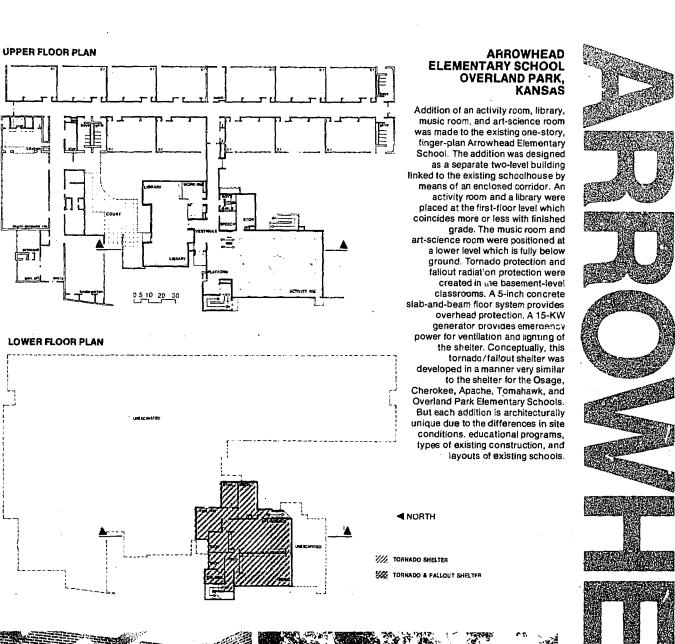
> Fallout Shelter 7,394 sq. ft. 515 persons

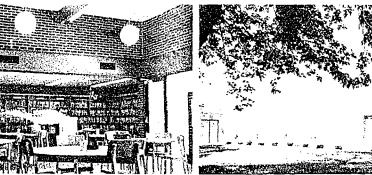
Tornado Sheiter

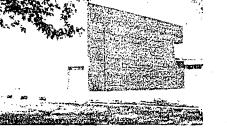

1,000 persons

(6 sq. ft./person)

Alterations by Marshall & Brown, Architects & Engineers Kansas City, Kansas


449


Shalter Location: Ground-Floor Cafeteria



ided by

20

Addition by Marshall & Brown, Architects & Engineers Kansas Clty, Kansas

Ū,

รัว

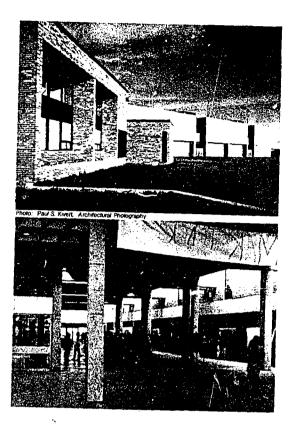
Tornado Shelter 3,564 sq. ft. 509 persons (7 sq. ft./person) Fallout Shelter 1,826 sq. ft. 155 persons (Includes 75 persons in existing space)

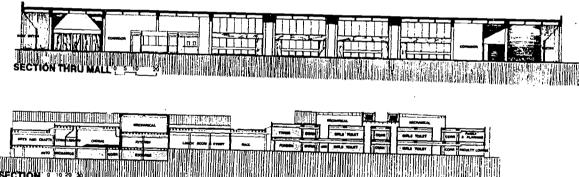
 $\leq 1^{\circ}$ **BUILDING SECTION**

K-6 Enrollment:

298 Area of Addition: 12,633 sq. ft. Cost of Addition: \$ 235,946.24

Shelter Location: Lower-Level Music Room & Art-Science Room Cost of Shelter: \$20,000.00 (estimated) or \$1.58/sq. ft.

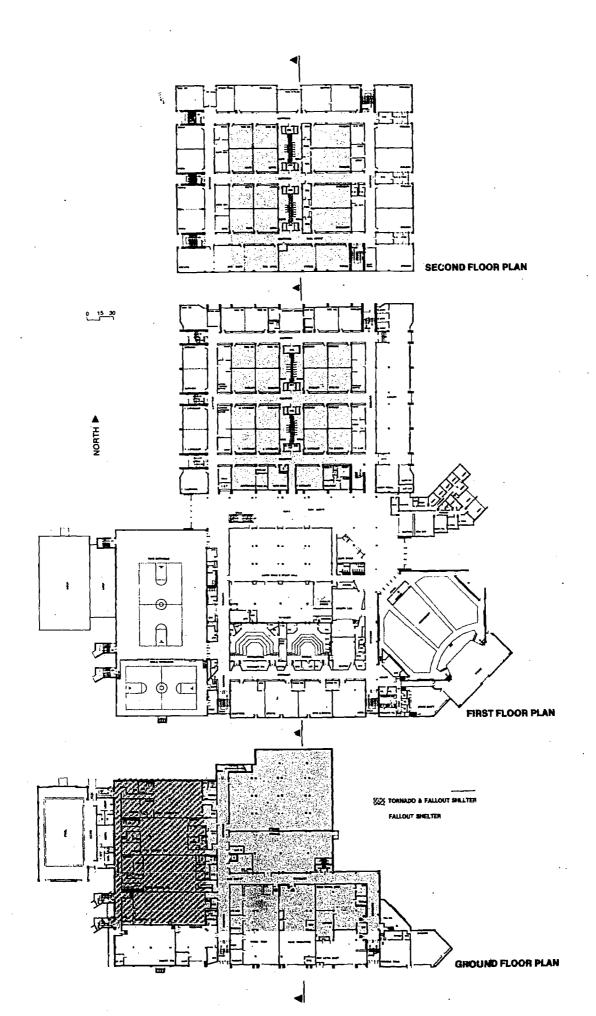




SHAWNEE MISSION NORTHWEST HIGH SCHOOL SHAWNEE, KANSAS This new senior high school for the former Shawnee Mission High School District was designed by the same architectural firm that completed the entire educational facilities upgrading and tornado-shelter programs for former Overland Park Elementary School District No. 110. All of there schools now are part of Unified District No. 512. The Shawnee Mission Northwest High School also was designed with a tornado shelter at the request of the district, and the tornado-shelter area doubles as a fallout shelter.

Northwest High School contains several unique architectural features which add to its pleasant character. Foremost is the student mall, a skylighted, student-commons area which serves as the physical link between a two-story classroom unit on the north and a two-story physical education-shop-music-art-auditorium facility on the south which is stepped down the gently sloping site. Another feature is the unique treatment of recessed windows and entranceways with glass sloped to give a skylighted officet

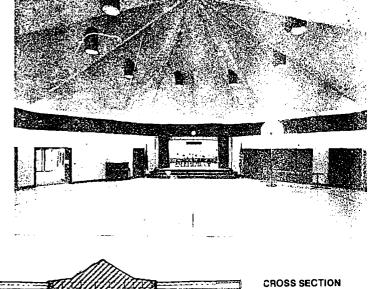
feature is the unique treatment of recessed windows and entranceways with glass sloped to give a skylighted effect. Tornado protection was integrated into the design and was included in the base bid. Necesary protection from high winds and structural collapse was achieved in core space on the ground floor of the south facility. An 11-inch reinforced concrete plate-slab was substituted for concrete pan-joists for the floor above the tornado-shelter area. The heavy construction mass of brick masoning and reinforced concrete results in fallout shelter for other spaces, both in the north classroom unit and the south unit. Because the tornado shelter is not self-contained, venting for pressure differential was not deemed necessary. An emergency generator furnishes power for shelter ventilation and lighting.



10-12 Enrollment: Area: Cost: Shelter Location; Cost of Shelter:

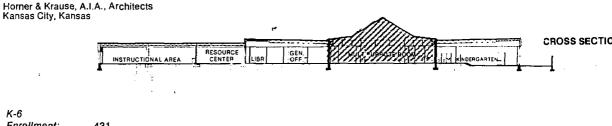
1963 303,396 sq. ft. \$5,341,959.00 Ground-Floor Locker Booms \$0.00

Marshall & Brown, Architects & Engineers Kansas City, Kansas


Tornado Shelter 17,450 sq. n. 2,240 persons (7 sq. ft./person) Fallout Shelter 92,264 oq. ft. 8,200 persons

ERIC

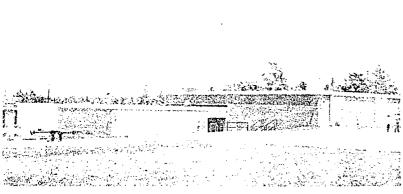
Designed for District No. 27 before unification into District No. 512, the Marsh Elementary School illustrates excellent integration of tornado protection with daily instructional purposes. Indeed, the casual observer might miss the tornado shelter which is the multipurpose room of this elementary school. The space also serves as the lunch room. Open instructional areas of the classroom portion, convenient relationships among the various service spaces, and attractive architecture all are evident and not affected by the tornado shelter design. The structural strength of a 5-inch thick folded-plate roof provided tornado resistance as well as the visual focus of the school. Surrounding core walls of 12-inch reinforced concrete provide protection at the horizontal. Openings into the space, while plentiful, are positioned to gain shielding from brick-faced enclosure walls at the perimeter of the building. Emergency power for ventilation was not provided for this shelter. The building was not designed with fallout radiation protection in mind; and, while the space does not meet DCPA recommended standards, significant fallout protection was achieved simultaneously with the tornado protection.

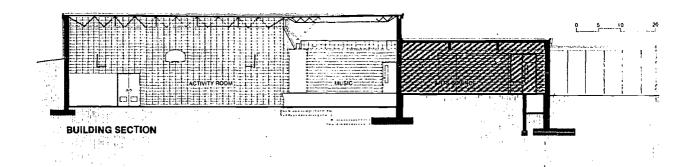


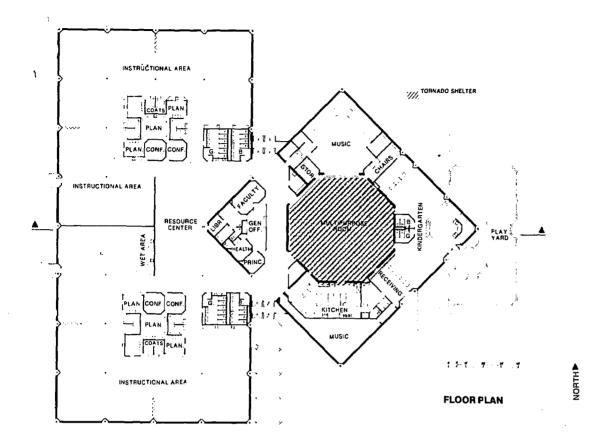
MARSH ELEMENTARY SCHOOL SHAWNEE, KANSAS

K-6

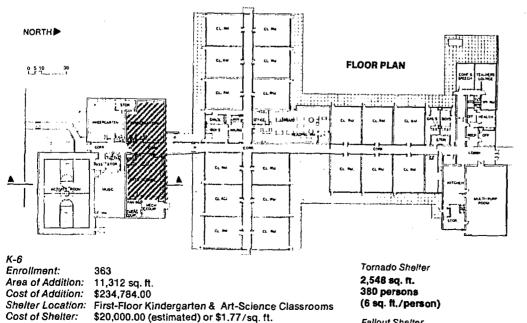
Area:


Cost:


Enrollment: 431 37,355 sq. ft. \$603,707.00 Shelter Location: First-Floor Multipurpose Room Cost of Shelter: \$6,400.00 (Architect's estimate) or \$0.17/sq. ft.

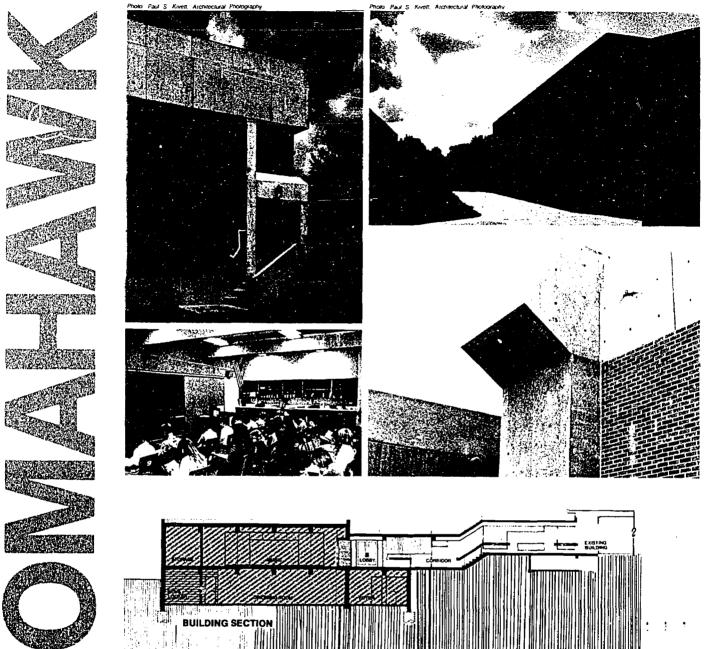

Tornado Sheiter 2,988 sq. ft.--net 600 persons (5 sq. ft./person)

Fallout Shelter Less than DCPA standards 300 persons



SEQUOYAH ELEMENTARY SCHOOL OVERLAND PARK, KANSAS

A one-story, slab-on-grade addition to this school, completed in 1968, included an activity room, two kindergartens, a music room, and an art-science room. Attached to an existing finger-plan school, the activity room of the addition is stepped down on a sloping site so that the floor level is partially below ground. Tornado protection was designed into the art-science classroom and a portion of the kindergarten area. Rock just below ground surface precluded a basement for this building. The tornado shelter also is a fallout shelter. Protection at ground level was gained by means of a concrete pan-joist roof slab with 20-inch deep ribs and 4½-inch slab. Steel-joist construction typically occurs for the rest of the addition. Exterior walls along the north side of the shelter area and interior walls around the shelter area are 12-inch reinforced concrete. An outside doorway into the shelter area is baffled against flying debris. A 7.5-KW gasoline-driven generator furnishes electrical power to shelter lighting and ventilation tans.



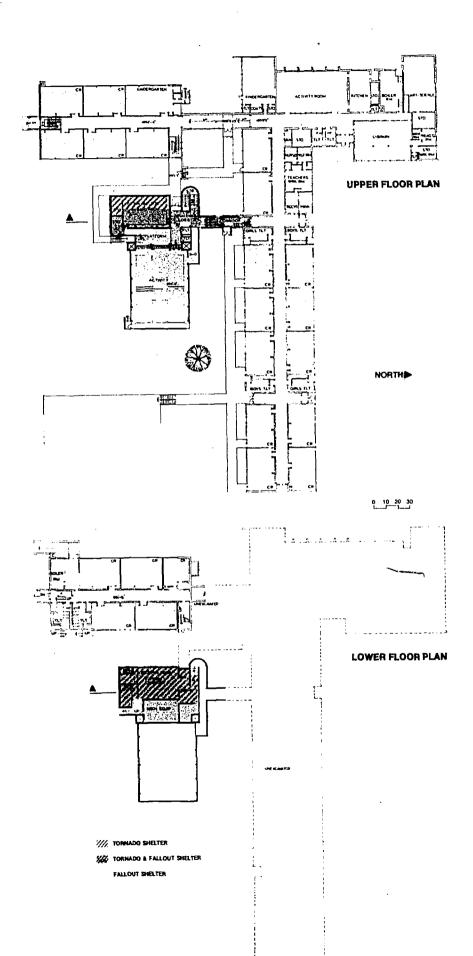
Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas

Fallout Shelter

2,548 sq. ft. 227 persons

TOMAHAWK ELEMENTARY SCHOOL **OVERLAND PARK**, KANSAS

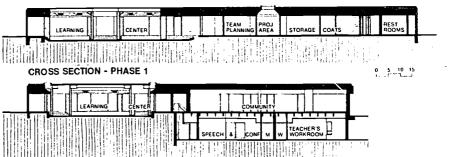
A distinguishing feature of the Tomahawk Elementary School is the landscaped court created by the relationship of this new addition to the existing finger-plan schoolhouse. The two-story addition stands free of the existing building and is connected by an enclosed corridor. The corridor also serves as the transition between floor levels since the addition is situated lower on the sloping site. Brick masonry and exposed concrete accents are the principal materials of construction for the addition. Tornado protection was designed into the first-floor music room and the partially depressed ground floor. A 6-inch slab-and-beam floor system and 12-incl. reinforced-concrete walls provide protection at the ground-floor level. A 6-inch concrete roof slab also covers the music room shelter of the first floor, whereas precast-concrete double-tees cover the activity room. Walls of 12-inch concrete also enclose the music room and circulation areas. Two architectural features of the addition are sculptural brick and concrete shafts which permit venting of the shelter areas in the event of a pressure differential created by a passing tornado. Spring-loaded louvers at the tops of the sharts are protected from weather and flying debris by sloped concrete baffles. A 10-KW standby generator furnishes electrical power for ventilation fans and lighting of shelter areas. The heavy concrete construction of both tornado shelters also results in fallout radiation protection.


K-6	
Enrollment:	467
Area of Addition:	9,610 sq. ft.
Cost of Addition:	\$215,421.42
Shelter Location:	Ground-Floor Dressing Rooms and First-Floor Music Room
Cost of Shelter:	\$35,000.00 (estimated) or \$3.64/sq. ft.

Tornado Shelter 3,000 sq. ft. 549 persons (5 sq. ft./person)

Fallout Shelter 3,049 sq. ft. 275 persons

Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas


. 27

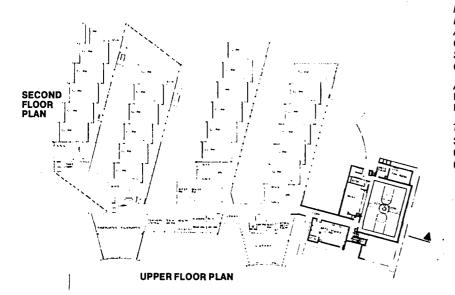
COMANCHE ELEMENTARY SCHOOL **OVERLAND PARK**, KANSAS

Comanche Elementary School was designed for construction in three phases. The basic first phase was completed in 1970; the second phase, a third classroom unit, was completed in 1971. The third phase is not yet under construction. Phases one and two have a design occupancy of 650 pupils. A school occupancy of 900 will be possible when the third phase is completed. This sculptural building was awarded a citation by the 1971 jury in AASA's Exhibition of School Architecture. The design solution consists of four large open spaces called "communities," each with flexible work area, special project area, team planning area, and activity room which functions as auditorium, theater, and gymnasium. Noisier activities such as music and dining are placed at a lower level below ground. That space serves as a tornado shelter as well. The tornado shelter was arranged so that it, too, would be enlarged with the second phase addition. Thus, the shelter occupancy is allowed to grow as the school grows. A 4½-inch concrete slab

DIAGONAL SECTION - PHASE 1

covers the lower level and provides the needed resistance against possible collapse of the upper floor. Load-bearing masonry walls carry light structural-steel roof framing of the upper floor. The tornado shelter offers significant fallout radiation protection; however, this does not meet recommendations of the **Defense Civil Preparedness** Agency. An emergency generator provides standby electrical power for tornado-shelter ventilation and lighting.

K-6


Enrollment: Area: Cost: Cost of Shelter:

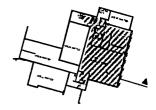
557 39,263 sq. ft. (First Phase) \$663,684.90 (First Phase) Shelter Location: Lower-Level Dining Area Data Not Available

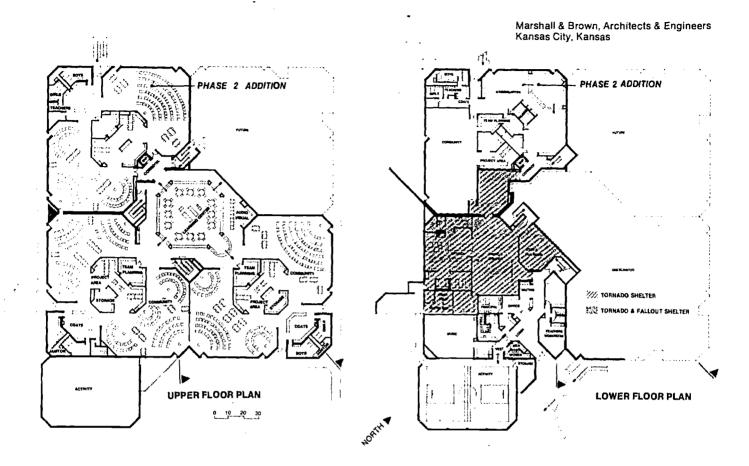
Tornado Snelter 3,122 sq. ft. 695 persons

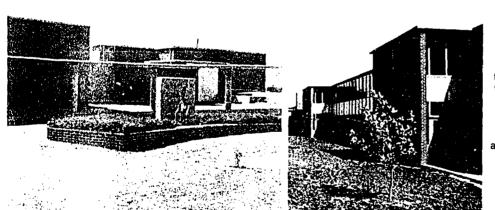
(4 sq. ft./person)

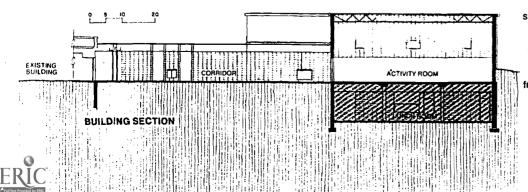
Fallout Shelter Less than DCPA standards 280 persons

NORTH


K-6


Enrollment: 620 Area of Addition: 15,860 sq. ft. Cost of Addition: \$251,000.00 Shelter Location: Ground-Floor Lunch Room Cost of Shelter: \$20,000.00 (estimated) or \$1.26/sq. ft.


Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas


Tornado Shelter Fallout Shelter 3,647 sq. ft. 3,647 sq. ft. 325 persons 650 persons (5 sq. ft./ person)

A two-story addition to the north side of the existing Apache Elementary School is an extension of the principal circulation corridor which links three existing wings. Brick masonry of the addition matches existing brick and curtain-wall construction. The lower floor of the new addition is below ground; the upper level coincides with the first floor of the existing building. Facilities in the new addition include art-science, music, and activity rooms at the upper level and lunch room and kitchen at the lower level. The lunch room and kitchen double as shelter protecting from both tornadoes and fallout radiation. Upper-floor construction, consisting of a 6-inch slab-and-beam system, provides the required structural rigidity and mass over the shelter space. Structural-steel beams and joists compose the roof framing system. Venting for the tornado shelter is achieved by means of a vertical shaft. Entrances leading to the lower level-one directly from the outside-are batfied from airborne debris. A 10-KW generator provides emergency power for shelter ventilation and lighting.

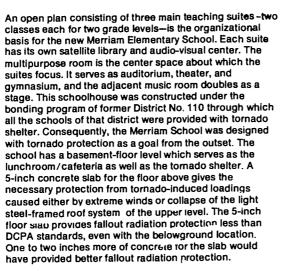
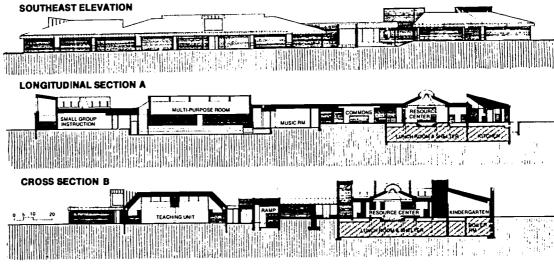
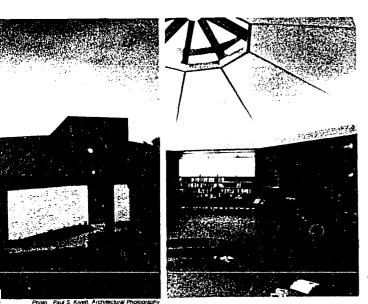
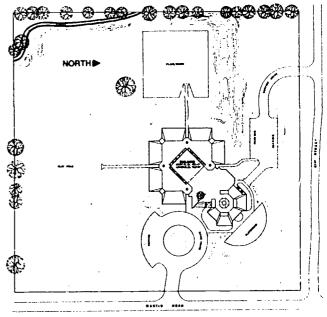
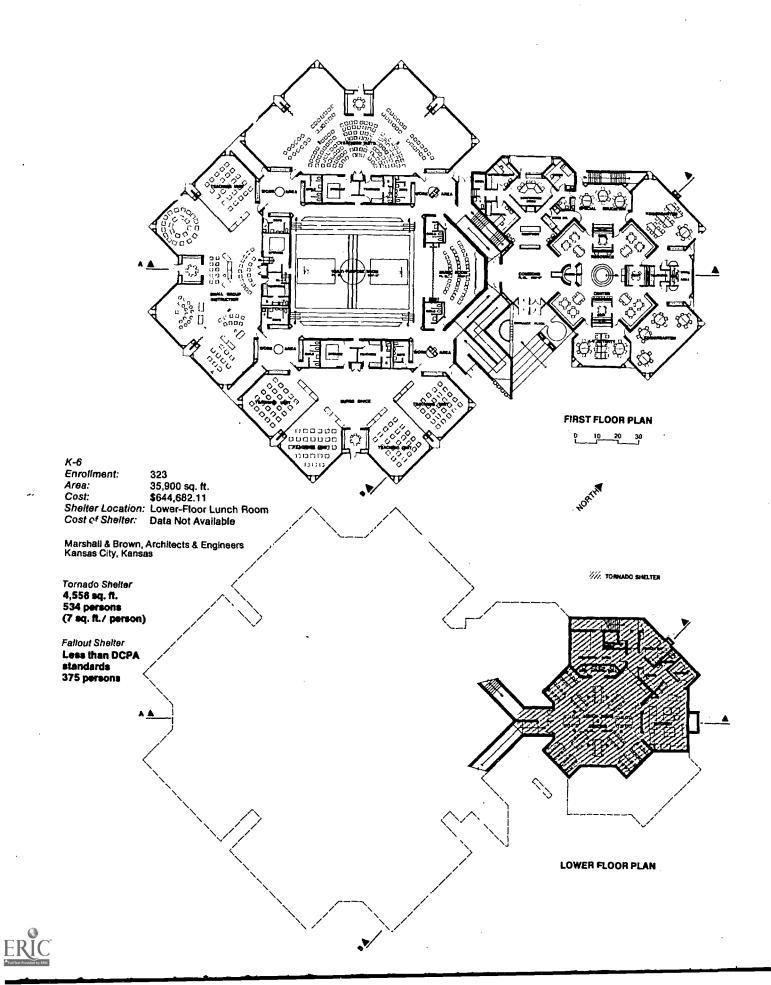


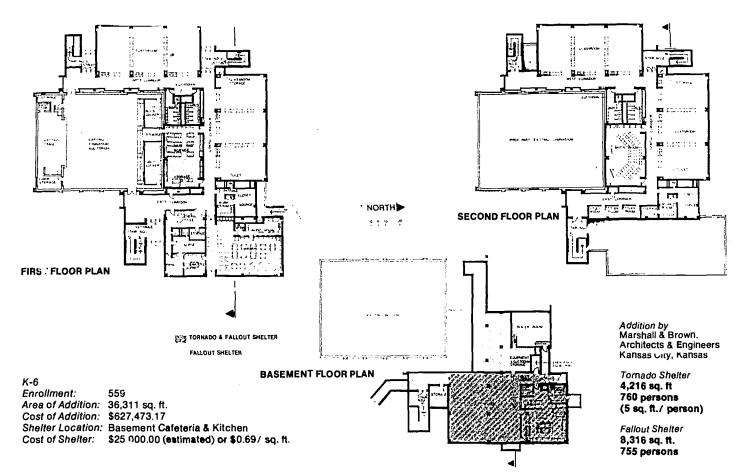
Photo Paul S Kivett, Architectural Pho

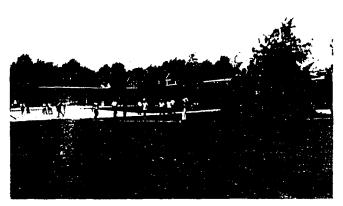


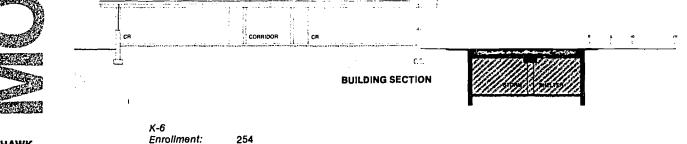




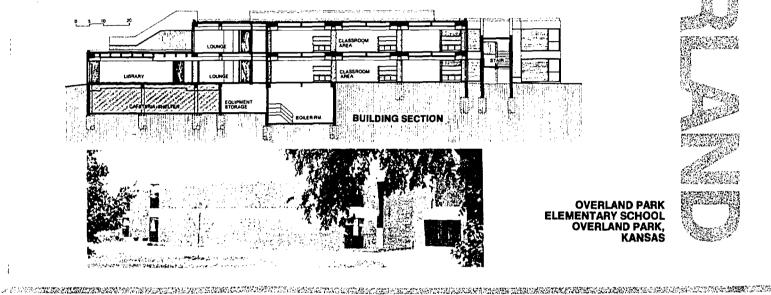

MERRIAM ELEMENTARY SCHOOL MERRIAM, KANSAS

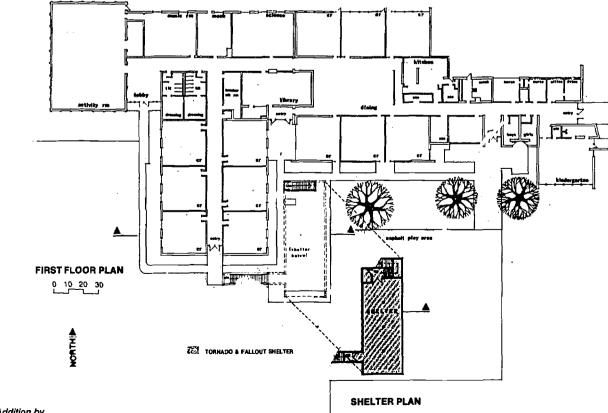



ERIC



This addition is unique among facilities added to the schools of former Overland Park Elementary School District No. 110. Mohawk School is one of two that needed no new educational space but which offered no reasonable possibility for creating suitable tornado protection in existing construction. Separate, single-purpose storm shelters were designed for these two schools to satisfy the objective of creating tornado protection in all of the former district's schoolhouses. The shelter for the Mohawk School was erected below ground in a playyard south of the existing one-story, slab-on-grade building whose light, steel-beam and fiber roof deck seemed to offer no possibility for tornado resistance. The roof of the shelter serves as a paved play area. Construction of the shelter is of reinforced concrete with 15-inch deep pan-joist roof covered with 6 inches of crushed rock and a 4-inch concrete play surface. The tornado shelter offers excellent fallout radiation protection as well. Stairways into the shelter space are baffled for protection from wind-blown debris. The shelter has its own exhaust fan and 7.5-KW emergency electric generator.

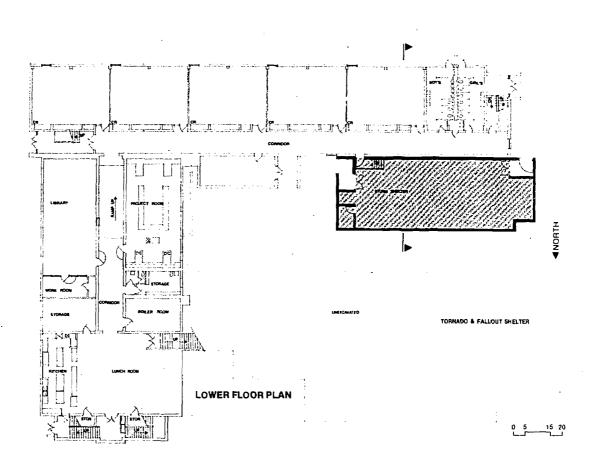



MOHAWK ELEMENTARY SCHOOL MISSION, KANSAS Enrollment: 254 Area of Addition: 2,042 sq. ft. Cost of Addition: \$47,204.00 Shelter Location: Below ground—Under playyard Cost of Shelter: \$47,204.00 or \$23.12/ sq. ft.

Tornado Shelter 1,820 sq. ft. 340 persons (5 sq. ft./ person) Fallout Shelter 1,820 sq. ft. 170 persons

first floor offer acceptable radiation shielding. The designed shelter space gains protection from the 61/2-inch structural concrete slab but benefits as well from the 16-inch deep concrete pan-joist system of the roof. Core areas of the first floor gain radiation shielding from the reinforced-concrete structural framing system, brick-masonry exterior walls, and masonry-block interior walls. Stairways to the basement cafeteria and shelter space are constructed of concrete as added protection from failure due to tornadic winds and flying missiles. Emergency ventilation in the shelter space is provided by a positive-pressure system using two-speed fans and the basic building equipment. Ventilation equipment and emergency lighting for the shelter area are hooked to a 15-KW standby electric generator.

This elementary school comprises two buildings separated by a major trafficway. With the most recent addition, the two buildings now are connected by a tunnel under the roadway. A relatively large expansion was made to the existing north building, an auditorium and gymnasium. The new construction includes classrooms, library, administrative offices, cafeteria, and related service areas in three floors-two above ground and one partially below ground. The architects achieved an exceptionally pleasant building with this extensive new construction-instructional space which functionally works, and attractive visual results Internally as well as externally. The basement level, housing careteria and kitchen, was designed with tornado protection and fallout radiation protection. In addition, core areas of the



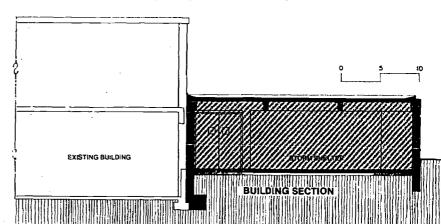
Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas

÷

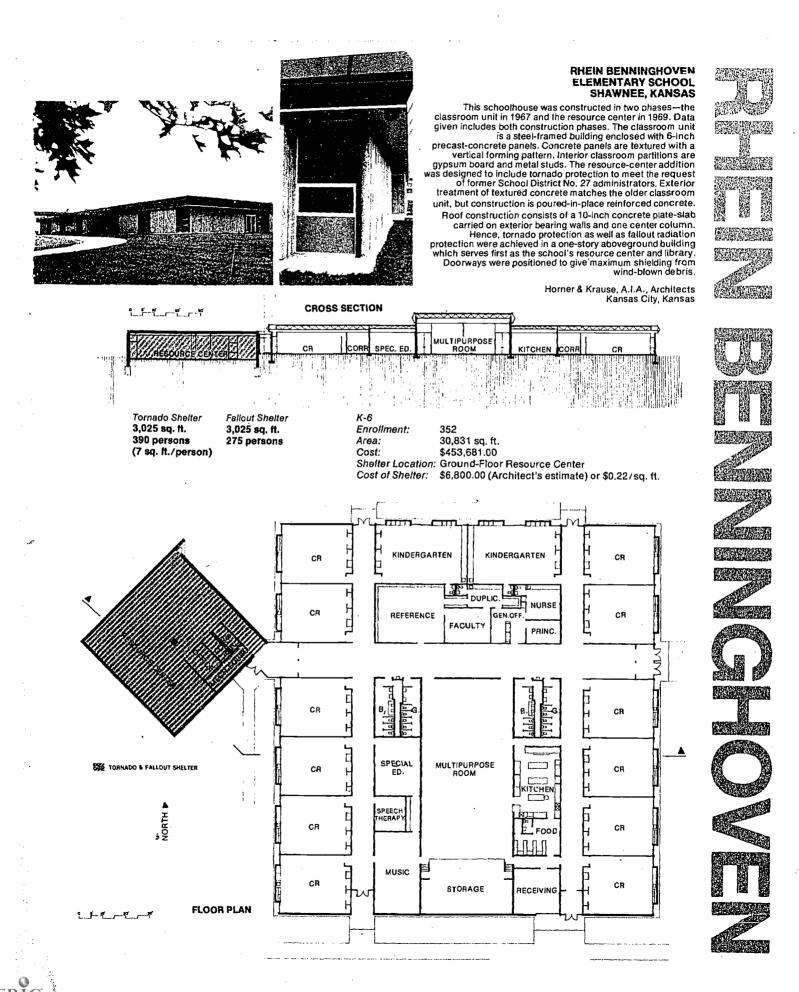
SOUTH PARK ELEMENTARY SCHOOL MERRIAM, **KANSAS**

> K-6 Enrollment: Area of Addition: Cost of Addition: Cost of Shelter:

ERIC


School is a one-story, slab-on-grade structure of reinforced-concrete construction and was designed principally as a storm shelter. It is the other of two single-purpose tornado shelters designed for former District No. 110. As with the Mohawk School, South Park needed no additional educational facilities but offered no space of adequate strength to provide tornado protection. A separate shelter was added as an aboveground appendage in a court between two existing classroom wings. The shelter appendage is attached to the southmost wing along the court side and is accessible directly from within the schoolhouse. Unlike the Mohawk School shelter, this space is used frequently for indoor play and related activities because of its easy access. However, it is unfinished. Reinforced-concrete construction is used for walls and roof-12-inch exterior walls and pan-joist roof system with 41/2-inch slab. Doorways are baffled with concrete walls. Venting of the space is provided by means of spring-loaded louvers adjacent to the west entrance. The louvers are partially screened from damage by flying debris. Fallout radiation protection is an added benefit of this tornado shelter. The shielding of the concrete roof is supplemented with a partially belowground floor for the shelter—a result of a sloping site in the court space. A 7.5-KW generator provides emergency electrical power for shelter exhaust fans and lighting.

The addition to South Park Elementary


Tornado Shelter 2,428 sq. ft. 432 persons (5 sq. ft./ person) 216 persons

Fallout Shelter 2,428 sq. ft.

Addition by Marshall & Brown, Architects & Engineers Kansas City, Kansas

404 2,428 sq. ft. \$48,914.00 Shelter Location: Lower-Floor Appendage \$48,914.00 or \$20,15/sq. ft.

	SCHOOL ENROLLMENT (1972-1973)	TORNADO SHELTER	FALLOUT SHELTER (® Meeting DCPA standards) (O Less than DCPA standards)
Antioch Elementary School	340	٠	
Apache Elementary School	620		
Arrowhead Elementary School	298	•	•
Bagby Elementary School	263		0
Belinder Elementary School	394		
Bluejacket Elementary School	552		
Bonjour Elementary School	554		•
Briarwood Elementary School	411	٠	
Brookridge Elementary School	587		
Brookwood Elementary School	450	•	•
Carpenter Elementary School	692		
Cherokee Elementary School	646	•	•
Comanche Elementary School	557	•	0
Corinth Elementary School	505		•
Crestview Elementary School	355	•	
Diemer Elementary School East Antioch Elementary School	650	_	
Flint Elementary School	484	•	0
Greenwood Elementary School	448	•	•
Hickory Grove Elementary School	121	•	-
Highlands Elementary School	449	•	
Linwood Elementary School	408		•
Marsh Elementary School	260 431	•	•
Merriam Elementary School	323		0
Mohawk Elementary School	254		
Moody Elementary School	714	•	•
Nall Hills Elementary School	634		
Nieman Elementary School	549	•	
Osage Elementary School	200		
Overland Park Elementary School	559		
Pawnee Elementary School	828		•
Porter Elementary School	439	•	•
Prairie Elementary School	567		•
Rhein Benninghoven Elementary School	352	•	0
Ridgeview Elementary School	450		
Roeland Park Elementary School	262		0
Roesland Elementary School	515		•
Rosehill Elementary School	701		0
Rushton Elementary School	331	•	•
Santa Fe Trail Elementary School	507	•	•
Sequoyah Elementary School	363	•	•
Shawanoe Elementary School	550		
Skyline Elementary School Somerset Elementary School	153		•
South Park Elementary School	444		
Tomahawk Elementary School	404 467	•	•
Trailwood Elementary School		•	•
Valley View Elementary School	689		•
West Antioch Elementary School	441 274	•	•
Westwood View Elementary School	255		
	255	•	•
Broadmoor Junior High School	4.057		
Hillcrest Junior High School	1,057	•	• •
Hocker Grove Junior High School	1,456	•	•
Indian Creek Junior High School	1,119	•	
Indian Hills Junior High School	1,040	•	
Meadowbrock Junior High School	896 867		•
Milburn Junior High School	1,022	•	0
Nallwood Junior High School	1,261		
Old Mission Junior High School	1,004	· ·	
Trailridge Junior High School	1,159		
-	1,100	-	•
Shawnee Mission East High School	1 910		•
Shawnee Mission North High School	1910	•	
Shawnee Mission Northwest High School	1,911 1,963		•
Shawnee Mission South High School	2,357		•
Shawnee Mission West High School	2,357	•	8

44,008

ACKNOWLEDGEMENTS

Special recognition is given to Robert B. Jarvis, Architect, Marshall & Brown, Architects & Engineers, and to E. V. Reichley, Assistant Superintendent, Shawnee Mission Public Schools, for their valuable support and particularly for furnishing necessary technical data and drawings used throughout this booklet.

Booklet Prepared by: Delbert B. Ward, A.I.A. Associate Professor of Architecture The University of Utah

Graphic Design and Layout by: Ted Nagata & Associates Salt Lake City, Utah

DISTRIBUTION

DCPA Regions and Staff College State and Local Civil Defense Directors Defense Coordinators of Federal Agencies Architects and Engineers Qualified in Fallout Shelter Analysis CE-NAVFAC Field Officers Chief State School Officers Professionals Interested in Shelter Construction Foreign Activities NATO Civil Defense Directors Libraries

31